Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 353, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072933

RESUMO

BACKGROUND: Ischemia/reperfusion injury is the leading cause of acute kidney injury (AKI). The current standard of care focuses on supporting kidney function, stating the need for more efficient and targeted therapies to enhance repair. Mesenchymal stromal cells (MSCs) and their secretome, either as conditioned medium (CM) or extracellular vesicles (EVs), have emerged as promising options for regenerative therapy; however, their full potential in treating AKI remains unknown. METHODS: In this study, we employed an in vitro model of chemically induced ischemia using antimycin A combined with 2-deoxy-D-glucose to induce ischemic injury in proximal tubule epithelial cells. Afterwards we evaluated the effects of MSC secretome, CM or EVs obtained from adipose tissue, bone marrow, and umbilical cord, on ameliorating the detrimental effects of ischemia. To assess the damage and treatment outcomes, we analyzed cell morphology, mitochondrial health parameters (mitochondrial activity, ATP production, mass and membrane potential), and overall cell metabolism by metabolomics. RESULTS: Our findings show that ischemic injury caused cytoskeletal changes confirmed by disruption of the F-actin network, energetic imbalance as revealed by a 50% decrease in the oxygen consumption rate, increased oxidative stress, mitochondrial dysfunction, and reduced cell metabolism. Upon treatment with MSC secretome, the morphological derangements were partly restored and ATP production increased by 40-50%, with umbilical cord-derived EVs being most effective. Furthermore, MSC treatment led to phenotype restoration as indicated by an increase in cell bioenergetics, including increased levels of glycolysis intermediates, as well as an accumulation of antioxidant metabolites. CONCLUSION: Our in vitro model effectively replicated the in vivo-like morphological and molecular changes observed during ischemic injury. Additionally, treatment with MSC secretome ameliorated proximal tubule damage, highlighting its potential as a viable therapeutic option for targeting AKI.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Secretoma , Isquemia/terapia , Isquemia/metabolismo , Vesículas Extracelulares/metabolismo , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Metabolismo Energético , Oxirredução , Células-Tronco Mesenquimais/metabolismo , Trifosfato de Adenosina/metabolismo
2.
J Transl Med ; 21(1): 723, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840135

RESUMO

BACKGROUND: Extracellular vesicles (EV) are considered a cell-free alternative to mesenchymal stromal cell (MSC) therapy. Numerous reports describe the efficacy of EV in conferring immunomodulation and promoting angiogenesis, yet others report these activities to be conveyed in EV-free bioproducts. We hypothesized that this discrepancy may depend either on the method of isolation or rather the relative impact of the individual bioactive components within the MSC secretome. METHODS: To answer this question, we performed an inter-laboratory study evaluating EV generated from adipose stromal cells (ASC) by either sequential ultracentrifugation (UC) or size-exclusion chromatography (SEC). The effect of both EV preparations on immunomodulation and angiogenesis in vitro was compared to that of the whole secretome and of the EV-free protein fraction after SEC isolation. RESULTS: In the current study, neither the EV preparations, the secretome or the protein fraction were efficacious in inhibiting mitogen-driven T cell proliferation. However, EV generated by SEC stimulated macrophage phagocytic activity to a similar extent as the secretome. In turn, tube formation and wound healing were strongly promoted by the ASC secretome and protein fraction, but not by EV. Within the secretome/protein fraction, VEGF was identified as a potential driver of angiogenesis, and was absent in both EV preparations. CONCLUSIONS: Our data indicate that the effects of ASC on immunomodulation and angiogenesis are EV-independent. Specific ASC-EV effects need to be dissected for their use as cell-free therapeutics.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Adipócitos , Células-Tronco Mesenquimais/metabolismo , Cicatrização , Vesículas Extracelulares/metabolismo , Proteínas/farmacologia
3.
Stem Cell Res Ther ; 14(1): 120, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143116

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs), commonly sourced from adipose tissue, bone marrow and umbilical cord, have been widely used in many medical conditions due to their therapeutic potential. Yet, the still limited understanding of the underlying mechanisms of action hampers clinical translation. Clinical potency can vary considerably depending on tissue source, donor attributes, but importantly, also culture conditions. Lack of standard procedures hinders inter-study comparability and delays the progression of the field. The aim of this study was A- to assess the impact on MSC characteristics when different laboratories, performed analysis on the same MSC material using harmonised culture conditions and B- to understand source-specific differences. METHODS: Three independent institutions performed a head-to-head comparison of human-derived adipose (A-), bone marrow (BM-), and umbilical cord (UC-) MSCs using harmonised culture conditions. In each centre, cells from one specific tissue source were isolated and later distributed across the network to assess their biological properties, including cell expansion, immune phenotype, and tri-lineage differentiation (part A). To assess tissue-specific function, angiogenic and immunomodulatory properties and the in vivo biodistribution were compared in one expert lab (part B). RESULTS: By implementing a harmonised manufacturing workflow, we obtained largely reproducible results across three independent laboratories in part A of our study. Unique growth patterns and differentiation potential were observed for each tissue source, with similar trends observed between centres. Immune phenotyping verified expression of typical MSC surface markers and absence of contaminating surface markers. Depending on the established protocols in the different laboratories, quantitative data varied slightly. Functional experiments in part B concluded that conditioned media from BM-MSCs significantly enhanced tubulogenesis and endothelial migration in vitro. In contrast, immunomodulatory studies reported superior immunosuppressive abilities for A-MSCs. Biodistribution studies in healthy mice showed lung entrapment after administration of all three types of MSCs, with a significantly faster clearance of BM-MSCs. CONCLUSION: These results show the heterogeneous behaviour and regenerative properties of MSCs as a reflection of intrinsic tissue-origin properties while providing evidence that the use of harmonised culture procedures can reduce but do not eliminate inter-lab and operator differences.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Células Cultivadas , Distribuição Tecidual , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células , Células da Medula Óssea , Cordão Umbilical
4.
Front Med (Lausanne) ; 8: 728496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616756

RESUMO

Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...